力矩和转动惯量的关系:力矩等于转动惯量乘以角加速度。力矩表示力对物体作用时所产生的转动效应的物理量。力和力臂的乘积为力矩。力矩是矢量。力对某一点的力矩的大小为该点到力的作用线所引垂线的长度(即力臂)乘以力的大小,其方向则垂直于垂线和力所构成的平面用右手螺旋法则来确定。
力对某一轴线力矩的大小,等于力对轴上任一点的力矩在轴线上的投影。转动惯量(MomentofInertia),是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
在经典力学中,转动惯量(又称质量惯性矩,简称惯矩)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。
转动惯量计算公式:I=mr²。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。
转动惯量的含义
转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。