双曲线的定义公式:x²/a²-y²/b² = 1焦点在x轴;y²/a²-x²/b² = 1焦点在y轴。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,中间点叫做中心,中心一般位于原点处。
1、取值区域:x≥a,x≤-a或者y≥a,y≤-a
2、对称性:关于坐标轴和原点对称.
3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;
B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b.
4、渐近线:
横轴:y=±(b/a)x
竖轴:y=±(a/b)x
5、离心率:
e=c/a 取值范围:(1,+∞)
6 双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率
7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离.
过右焦点的半径r=|ex-a|
过左焦点的半径r=|ex+a|
8 等轴双曲线 双曲线的实轴与虚轴长相等
2a=2b e=√2
9 共轭双曲线
(x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线
(1)共渐近线
(2)e1+e2>=2√2
10 准线:x=±a^2/c,或者y=±a^2/c
11.通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2b^2/a
12.焦点弦长公式:2pe/(1-e^2cos^2θ) [p为焦点到准线距离,θ为弦与X轴夹角] 或2p/sin^2θ
13.d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:
由 直线的斜率公式:k = (y1 - y2) / (x1 - x2)
得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k
分别代入两点间的距离公式:|AB| = √[(x1 - x2)² + (y1 - y2)² ]
稍加整理即得:
|AB| = |x1 - x2|√(1 + k²) 或 |AB| = |y1 - y2|√(1 + 1/k²)