I=mr²。
转动惯量计算公式:I=mr²。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。
转动惯量计算公式:
1、对于细杆:
当回转轴过杆的中点(质心)并垂直于杆时I=mL²/I²;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL²/3;其中m是杆的质量,L是杆的长度。
2、对于圆柱体:
当回转轴是圆柱体轴线时I=mr²/2;其中m是圆柱体的质量,r是圆柱体的半径。
3、对于细圆环:
当回转轴通过环心且与环面垂直时,I=mR²;当回转轴通过环边缘且与环面垂直时,I=2mR²;I=mR²/2沿环的某一直径;R为其半径。
4、对于立方体:
当回转轴为其中心轴时,I=mL²/6;当回转轴为其棱边时I=2mL²/3;当回转轴为其体对角线时,I=3mL²/16;L为立方体边长。
5、对于实心球体:
当回转轴为球体的中心轴时,I=2mR²/5;当回转轴为球体的切线时,I=7mR²/5;R为球体半径。
力矩电机选型中一个有挑战性的机械参数
转动惯量的计算介绍力矩电机选型中最难确定的机械参数,往往是转动惯量。它是运动物体的惯性量值。它的大小不仅取决于运动物体的质量大小,也与运动物体到旋转中心轴的距离有关。甚至对一个简明的系统来说,正确的计算转动惯量也是比较难的。本文带您深入了解这一物理量。
定义
转动惯量说明了某一运动物体在其角速度变化时遇到的阻力大小。好比在一个直线运动中,物体质量实际是直线加速度的阻力。为了得到相同的角加速度,转动惯量大意味着需要施加更大的转矩。这种相关性可以从一个著名的公式看出: