奇函数和偶函数的性质公式?
如果f(-x)=-f(x),就是奇函数。如果f(-x)=f(x),就是偶函数。
奇函数有什么性质?
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。
但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
奇函数性质:1、图象关于原点对称;2、满足f(-x) = - f(x);3、关于原点对称的区间上单调性一致;4、如果奇函数在x=0上有定义,那么有f(0)=0;5、定义域关于原点对称(奇偶函数共有的)。